- School of Mechanical & Convergence System Engineering, Kunsan National University, 558 Daehak-ro, Gunsan 54150, Korea.[https://europepmc.org/article/pmc/6695703]
- Yoon Y., Gruber S., Krakow L., Pack D. Optimization and Cooperative Control Strategies. Springer; Berlin/Heidelberg, Germany: 2009. Autonomous target detection and localization using cooperative unmanned aerial vehicles; pp. 195–205. [Google Scholar]
- Gietelink O., Ploeg J., De Schutter B., Verhaegen M. Development of advanced driver assistance systems with vehicle hardware-in-the-loop simulations. Veh. Syst. Dyn. 2006;44:569–590. doi: 10.1080/00423110600563338. [CrossRef] [Google Scholar]
- Geronimo D., Lopez A.M., Sappa A.D., Graf T. Survey of pedestrian detection for advanced driver assistance systems. IEEE Trans. Pattern Anal. Mach. Intell. 2010;32:1239–1258. doi: 10.1109/TPAMI.2009.122. [Abstract] [CrossRef] [Google Scholar]
- Ferguson D., Darms M., Urmson C., Kolski S. Detection, prediction, and avoidance of dynamic obstacles in urban environments; Proceedings of the 2008 IEEE Intelligent Vehicles Symposium; Eindhoven, The Netherlands. 4–6 June 2008; pp. 1149–1154. [Google Scholar]
- Hirz M., Walzel B. Sensor and object recognition technologies for self-driving cars. Comput.-Aided Des. Appl. 2018;15:501–508. doi: 10.1080/16864360.2017.1419638.[CrossRef] [Google Scholar]
- Pathak A.R., Pandey M., Rautaray S. Application of Deep Learning for Object Detection. Procedia Comput. Sci. 2018;132:1706–1717. doi: 10.1016/j.procs.2018.05.144. [CrossRef] [Google Scholar]
- Puri A. A Survey of Unmanned Aerial Vehicles (UAV) for Traffic Surveillance.Department of Computer Science and Engineering, University of South Florida; Tampa, FL, USA: 2005. pp. 1–29. [Google Scholar]
- Hinas A., Roberts J., Gonzalez F. Vision-based target finding and inspection of a ground target using a multirotor UAV system. Sensors. 2017;17:2929. doi: 10.3390/s17122929. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
- Tijtgat N., Van Ranst W., Goedeme T., Volckaert B., De Turck F. Embedded real-time object detection for a UAV warning system; Proceedings of the IEEE International Conference on Computer Vision; Venice, Italy. 22–29 October 2017; pp. 2110–2118. [Google Scholar]
- Han S., Shen W., Liu Z. Deep Drone: Object Detection and Tracking for Smart Drones on Embedded System. Stanford University; Stanford, CA, USA: 2016. [Google Scholar]
- Wang X. Deep learning in object recognition, detection, and segmentation. Found. Trends® Signal Process. 2016;8:217–382. doi: 10.1561/2000000071. [CrossRef] [Google Scholar]
- LeCun Y., Bengio Y., Hinton G. Deep learning. Nature. 2015;521:436. doi: 10.1038/nature14539. [Abstract] [CrossRef] [Google Scholar]
- Nvidia Embedded Systems for Next-Generation Autonomous Machines NVidia Jetson: The AI Platform for Autonomous Everything. [(accessed on 27 February 2019)];Available online: https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/
- Raspberry Pi 3. [(accessed on 27 February 2019)]; Available online: www.raspberrypi.org/products/
- LattePanda 4G/64G. [(accessed on 27 February 2019)]; Available online: www.lattepanda.com/products/3.html.
- Hardkernel Co., Ltd: ODROID-XU4 User Manual. [(accessed on 27 February 2019)];Available online: magazine.odroid.com/odroid-xu4/
- Intel Intel® MovidiusTM Neural Compute Stick. [(accessed on 27 February 2019)];Available online: https://movidius.github.io/ncsdk/ncs.html.
- Nvidia GeForce GTX 1080. [(accessed on 27 February 2019)]; Available online: http://www.geforce.co.uk/hardware/10series/geforce-gtx-1080/
- Nvidia Meet Jetson, the Platform for AI at the Edge. [(accessed on 3 March 2019)];Available online: https://developer.nvidia.com/embedded-computing.
- Jetson TX1 Module. [(accessed on 3 March 2019)]; Available online: https://developer.nvidia.com/embedded/buy/jetson-tx1.
- Jetson TX2. [(accessed on 3 March 2019)]; Available online: www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-tx2/
- NVidia JETSON AGX XAVIER: The AI Platform for Autonomous Machines. [(accessed on 3 March 2019)]; Available online: www.nvidia.com/en-us/autonomous-machines/jetson-agx-xavier/
- Jetson AGX Xavier Developer Kit. [(accessed on 3 March 2019)]; Available online: developer.nvidia.com/embedded/buy/jetson-agx-xavier-devkit.
- NVidia Jetson AGX Xavier Delivers 32 TeraOps for New Era of AI in Robotics. [(accessed on 3 March 2019)]; Available online: devblogs.nvidia.com/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/
- Raspberry Pi. [(accessed on 3 March 2019)]; Available online: en.wikipedia.org/wiki/Raspberry_Pi.
- What is a Raspberry Pi? [(accessed on 3 March 2019)]; Available online: opensource.com/resources/raspberry-pi.
- Raspbian. [(accessed on 4 March 2019)]; Available online: www.raspberrypi.org/downloads/raspbian/
- Latte Panda 4G/64G. [(accessed on 4 March 2019)]; Available online: www.lattepanda.com/products/3.html.
- Lubuntu: Welcome to the Next Universe. [(accessed on 3 March 2019)]; Available online: lubuntu.me.
- ODROID-XU4. [(accessed on 4 March 2019)]; Available online: wiki.odroid.com/odroid-xu4/odroid-xu4.
- ODROID-XU4 Manual. [(accessed on 4 March 2019)]; Available online: magazine.odroid.com/odroid-xu4.
- NCSDK Documentation. [(accessed on 4 March 2019)]; Available online: movidius.github.io/ncsdk/
- Adding AI to the Raspberry Pi with the Movidius Neural Compute Stick. [(accessed on 4 March 2019)]; Available online: www.bouvet.no/bouvet-deler/adding-ai-to-edge-devices-with-the-movidius-neural-compute-stick.
- Rhodes B., Goerzen J. Foundations of Python Network Programming. Springer; Berlin, Germany: 2014. [Google Scholar]
- Howard A.G., Zhu M., Chen B., Kalenichenko D., Wang W., Weyand T., Andreetto M., Adam H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv. 20171704.04861 [Google Scholar]
- Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.-Y., Berg A.C. European Conference on Computer Vision. Springer; Cham, Switzerland: 2016. Ssd: Single shot multibox detector; pp. 21–37. [Google Scholar]
- Redmon J., Divvala S., Girshick R., Farhadi A. You only look once: Unified, real-time object detection; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Las Vegas, NV, USA. 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Zhao Z.-Q., Zheng P., Xu S., Wu X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019 doi: 10.1109/TNNLS.2018.2876865.[Abstract] [CrossRef] [Google Scholar]
- Hui J. Real-Time Object Detection with YOLO, YOLOv2 and Now YOLOv3. [(accessed on 24 February 2019)]; Available online: medium.com/@jonathan_hui/real-time-object-detection-with-YOLO-YOLOv2-28b1b93e2088.
- Redmon J., Farhadi A. YOLO9000: Better, faster, stronger; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Honolulu, HI, USA. 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon J., Farhadi A. YOLOv3: An incremental improvement. arXiv. 20181804.02767 [Google Scholar]
- Kathuria A. What’s new in YOLO v3? [(accessed on 24 February 2019)]; Available online: towardsdatascience.com/YOLO-v3-object-detection-53fb7d3bfe6b.
- Redmon J. Darknet: Open Source Neural Networks in C 2013. 2016.
- Tsang S.-H. Review: YOLOv2 & YOLO9000—You Only Look Once (Object Detection) [(accessed on 24 February 2019)]; Available online: towardsdatascience.com/review-YOLOv2-YOLO9000-you-only-look-once-object-detection-7883d2b02a65.
- Li J. Reading Note: YOLO9000: Better, Faster, Stronger. [(accessed on 24 February 2019)]; Available online: joshua19881228.github.io/2017-01-11-YOLO9000/
- Gao H. Understand Single Shot MultiBox Detector (SSD) and Implement It in Pytorch. [(accessed on 25 February 2019)]; Available online: medium.com/@smallfishbigsea/understand-ssd-and-implement-your-own-caa3232cd6ad.
- Forson E. Understanding SSD MultiBox—Real-Time Object Detection in Deep Learning. [(accessed on 25 February 2019)]; Available online: towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep learning-495ef744fab.
- Szegedy C., Reed S., Erhan D., Anguelov D., Ioffe S. Scalable, high-quality object detection. arXiv. 20141412.1441 [Google Scholar]
- Szegedy C., Toshev A., Erhan D. Deep neural networks for object detection. Adv. Neural Inf. Process. Syst. 2013;26:2553–2561. [Google Scholar]
- Girshick R., Donahue J., Darrell T., Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Columbus, OH, USA. 23–28 June 2014; pp. 580–587. [Google Scholar]
- Uijlings J.R.R., Van De Sande K.E.A., Gevers T., Smeulders A.W.M. Selective search for object recognition. Int. J. Comput. Vis. 2013;104:154–171. doi: 10.1007/s11263-013-0620-5. [CrossRef] [Google Scholar]
- Parthasarathy D. A Brief History of CNNs in Image Segmentation: From R-CNN to Mask R-CNN. [(accessed on 24 February 2019)]; Available online: blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4.
- Ren S., He K., Girshick R., Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015;28:91–99. doi: 10.1109/TPAMI.2016.2577031. [Abstract] [CrossRef] [Google Scholar]
- He K., Gkioxari G., Dollár P., Girshick R. Mask r-cnn; Proceedings of the IEEE International Conference on Computer Vision; Venice, Italy. 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Chen L.-C., Zhu Y., Papandreou G., Schroff F., Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation; Proceedings of the European Conference on Computer Vision (ECCV); Munich, Germany. 8–14 September 2018; pp. 801–818. [Google Scholar]
- Chen L.-C., Papandreou G., Kokkinos I., Murphy K., Yuille A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2018;40:834–848. doi: 10.1109/TPAMI.2017.2699184. [Abstract] [CrossRef] [Google Scholar]
- Chollet F. Xception: Deep learning with depthwise separable convolutions; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Honolulu, HI, USA. 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Qi H., Zhang Z., Xiao B., Hu H., Cheng B., Wei Y., Dai J. Deformable convolutional networks–coco detection and segmentation challenge 2017 entry; Proceedings of the ICCV COCO Challenge Workshop; Venice, Italy. 28 October 2017; p. 6. [Google Scholar]
- Chen L.-C., Papandreou G., Schroff F., Adam H. Rethinking atrous convolution for semantic image segmentation. arXiv. 20171706.05587 [Google Scholar]
- Wojke N., Bewley A., Paulus D. Simple online and realtime tracking with a deep association metric; Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP); Beijing, China. 17–20 September 2017; pp. 3645–3649. [Google Scholar]
- Bewley A., Ge Z., Ott L., Ramos F., Upcroft B. Simple online and realtime tracking; Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP); Phoenix, AZ, USA. 25–28 September 2016; pp. 3464–3468. [Google Scholar]
- Zheng L., Bie Z., Sun Y., Wang J., Su C., Wang S., Tian Q. European Conference on Computer Vision. Springer; Cham, Switzerland: 2016. Mars: A video benchmark for large-scale person re-identification; pp. 868–884. [Google Scholar]
- Zagoruyko S., Komodakis N. Wide residual networks. arXiv. 20161605.07146 [Google Scholar]